www.kbcafe.com

HowTo SMTP

by Randy Charles Morin

Some of the simplest, yet very rich communication protocols were born on the Internet.
This is the first article in a series where I will write on these simple communication
protocols. This article will focus on the SMTP (Simple Mail Transfer Protocol) protocol.
This protocol is the most often used protocol for sending email over the Internet.

SMTP is nearly always implemented over TCP/IP (Transmission Control
Protocol/Internet Protocol), but can be implemented over any type of transport protocol.
However, for simplicity sake, the examples in this article will focus on using socket
connections and the TCP/IP transport. That's enough about the transport and lower level
details of implementing SMTP. If you want to find out more about TCP/IP and other
transports, then I suggest you dive into a book on network communications.

Let's begin by defining the public interface to our class. We need five member variables
to define the five parameters we need to send out one email. They are the address of the
SMTP server (m_strServer) we are sending the messages through; the recipient's Internet
email address (m_strRecipient), the sender's Internet email address (m_strSender), the
subject line (m_strSubject) and the message body (m_strContent). Finally, we need one
method (Send) to invoke the process of sending the email.

Listing 1: Declaration
TIEETEIEE i rrrrrrrrrrd

/1l smp.h: interface for the Smp class.

/1 Copyright 2000 by Randy Charles Mrin

/1 You have unlimted ability to distribute and nmodify this source,
/1 but this legal notice nmust renmin intact and the Sntp cl ass nust
/1 remain within the kbcafe namespace.

NN
#i f ndef KBCAFE_SMIP_H

#def i ne KBCAFE_SMIP_H

#i ncl ude <exception>

#i ncl ude <string>

namespace kbcafe

{

cl ass Smt pException : public std::exception

{
std::string mstr;
publi c:
Snt pExcepti on()
:mstr("SMIP exception")
{}

Snt pException(const std::string & str)
:mstr("SMIP exception"+str)
{}

virtual const char * what() const throw()

{
}

return mstr.c_str();
H
class Smtp

{
publi c:
voi d Send();

Copyright 2001-2002 Randy Charles Morin

www.kbcafe.com

std::string mstrContent;
std::string mstrSender;
std::string mstrRecipient;
std::string mstrServer;
std::string mstrSubject;
St p();
virtual ~Smtp();

H

}
#endi f

I also created an exception class that I will use in the implementation of the Smtp class.
As the exception is derived from the STL exception class, you can catch either the
SmtpException or the base STL exception. Both use the what method to provide a more
descriptive string on the symptoms of the exception.

In our example we will use the winsock library. Although this is not the most compliant
version of the socket libraries, it is likely the most used. Once particular that we must get
out of the way is the initialization and cleanup of the socket library. This is done by
calling WSAStartup before any calls to the socket library and calling WSACleanup when
you are finished. This can be encapsulated in one class.

class WBAIni t

{
public:
WBAI ni t ()
WORD w = MAKEWORD(1, 1) ;
WEADATA wsadat a;
::WBASt artup(w, &wsadata);
H
~WBAI ni t ()

11 WBAC eanup() ;

} instance;

Now we have our initialization and cleanup code and the only code remaining is the code
behind our Send method, that is, call the logic necessary to send one email.

Let's start by asking the winsock library for the well-known-port for the smtp service. I
already know the answer, SMTP is almost always over port 25. The getservbyname will
always return port 25 for SMTP, but I suggest you use this function rather than relying on
the magic number. I do this primarily in respect of the legacy code that I've accumulated
over the years.

struct servent * sp = ::getservbynane("sntp", "tcp");
if (sp == NULL)

} t hrow Snt pException("SMIP i s an unknown TCP service");

The next step is to translate the SMTP server address into an IP address. This is done by
using the inet addr function to determine if the address is a URL or if it is already in IP
form. If the function returns INADDR NONE, then you can assume that it is a URL and
not in IP form. The functions gethostbyname and gethostbyaddr are then used to translate
the URL or IP address into a hostent structure. We will require this hostent structure later
when we connect to the SMTP server.

hostent * host;
i n_addr inaddr;

Copyright 2001-2002 Randy Charles Morin

www.kbcafe.com

inaddr.s_addr = ::inet_addr(mstrServer.c_str());
if (inaddr.s_addr == | NADDR_NONE)
{
host = ::gethostbyname(mstrServer.c_str());
}
el se
{
host = ::gethostbyaddr((const char *)& naddr, sizeof(inaddr),
AF_I NET) ;

}
if (host == NULL)

t hrow Snt pException("invalid SMIP server");
}

Now that we have the hostent structure, we need to open a socket where we will establish
a TCP connection to the SMTP host. The socket is opened using the socket function.

SOCKET socket = ::socket (AF_| NET, SOCK_STREAM | PPROTO TCP);
if (socket == | NVALI D_SOCKET)

t hrow Snt pException("socket invalid");

}

Part of the cleanup of sockets is to release each socket when they are no longer required.
This is done by calling the closesocket function. In order to guarantee our socket is
closed, I created a SmartSocket class. If you pass the socket handle to the constructor of
the class, then when the class and socket handle go out of scope the socket is
automatically closed.

cl ass Smart Socket

{ SOCKET m socket ;

public:

Smar t Socket (SOCKET & socket)
:m socket (socket)
{}

~Snmart Socket ()
{
}

Smart Socket smartsocket (socket);

;. cl osesocket (socket);

Finally, to establish the TCP connection we call the connect function with the socket and
hostent structures returned in our previous calls. We now have a socket connection to the
SMTP server.

sockaddr _in sa;

sa.sin_famly = AF_I NET;

sa.sin_port = sp->s_port;

sa. sin_addr.s_addr = *((u_l ong*)host->h_addr_list[0]);
if (::connect(socket, (sockaddr *)&sa, sizeof(sa)) < 0)

t hrow Snt pException("connection to host failed");

}

Now that we have the connection we can begin transmitting bytes to and receiving bytes
from the SMTP server. Writing to a socket is very simple. Using the send function, you
send a blob of bytes into the socket.

void Wite(SOCKET & socket, const std::string & str)

{
#i f def _DEBUG
std::cout << str << std::endl;

Copyright 2001-2002 Randy Charles Morin

www.kbcafe.com

#endi f
int n =str.length();
const char * s = str.c_str();
while (n)

int i =::send(socket, s, n, 0);
if (n<=0)
{

t hrow kbcaf e: : Snt pExcepti on("socket wite failed");
}
n -
S +

i
i
. }

Reading from a socket is a bit more complex. You have to account for to protocol
behaviors. The first behavior is from TCP. When receiving data from a TCP socket
connection, you might not get all the data in your first call to the recv function. You may
have to recursively call the function until you know all the bytes have been received. The
second behavior is from the SMTP protocol. The protocol outlines that all responses
returned from the SMTP server are delimited by a linefeed. This means we can setup a
while loop that look forever until the at least one linefeed is received from the socket.

std::string Response(SOCKET & socket)
{

int roundtrips = O;
std::string response;

whi | e(true)

{
char buffer[1024];
int n =::recv(socket, buffer, sizeof(buffer), 0);
if (n==-1)

{

t hrow kbcaf e: : Snt pExcepti on("socket read failed");

’esponse += std::string(buffer, n);
if (response.find("\n") != response. npos)

—_— e

-~

#i f def _DEBUG

std::cout << response << std::endl;
#endi f

return response;

}

roundtri ps++;
if (roundtrips > 1000)

t hrow kbcaf e: : Snt pExcepti on("socket read timeout");

}
}

As soon as the socket connection is established with an SMTP server, the SMTP server
will send you a response indicating that it is alive and ready. This response will begin
with the status code 220. Any other status code is generally out of protocol and can be
considered an error.

std::string response = Response(socket);
if (response.find("220") == response. npos)

t hrow Snt pExcepti on(response);
}
The next step is to identify yourself to the SMTP server. This is done by issuing the

HELO SMTP command following by your identification.
struct sockaddr_in |ocal;

int n = sizeof(local);
. get sockname(socket, (struct sockaddr *)& ocal, &n);

Copyright 2001-2002 Randy Charles Morin

www.kbcafe.com

struct hostent * h = ::gethostbyaddr((char*)& ocal.sin_addr,

si zeof (|1 ocal . sin_addr), AF_INET);

std::stringstream ss;

ss << "HELO "
<< (char *)(h ? h->h_nane : ::inet_ntoa(local.sin_addr))
<< "\r\n";

Wite(socket, ss.str());

The SMTP server will respond with a status of 250.

response = Response(socket);
if (response.find("250") == response. npos)

t hrow Snt pExcepti on(response);

}

Now you can begin sending email. We'll begin by identifying the sender of the email
using the MAIL FROM SMTP command.

std::stringstream ss;
ss << "MAIL FROM <" << mstrSender << ">\r\n";
Wite(socket, ss.str());

The SMTP server will respond with a status of 250.

response = Response(socket);
if (response.find("250") == response. npos)

t hrow Snt pExcepti on(response);

}
Next we identify the recipient of the email using the RCPT TO SMTP command.

std::stringstream ss;
ss << "RCPT TO <" << mstrRecipient << ">\r\n";
Wite(socket, ss.str());

The SMTP server will respond with a status of 250.

response = Response(socket);
if (response.find("250") == response. npos)

t hrow Snt pExcepti on(response);

}

Finally, we issue the DATA SMTP command. This command indicates to the server that
we are prepared to send the content of the email.

std::stringstream ss;
ss << "DATA\r\n";
Wite(socket, ss.str());

The SMTP server will respond with a status of 354.

response = Response(socket);
if (response.find("354") == response. npos)

t hrow Snt pExcepti on(response);

}

The format of the SMTP message is several headers, followed by a blank line, followed
by the message content and finally a line that contains one character, a period.

std::stringstream ss;
Ss << "Subject: " << mstrSubject << "\r\n"
<< "To: " << mstrRecipient << "\r\n"
<< "From " << mstrSender << "\r\n"
<< "\r\n" << mstrContent << "\r\n.\r\n";

Copyright 2001-2002 Randy Charles Morin

www.kbcafe.com

Wite(socket, ss.str());

If the SMTP server received everything without problems, it will respond with a status of
250.

response = Response(socket);
if (response.find("250") == response. npos)

t hrow Snt pExcepti on(response);

}

The last thing we should do is inform the SMTP server that we are finished. We can do
this by issuing the QUIT SMTP command.

std::stringstream ss;
ss << "QUIT\r\n";
Wite(socket, ss.str());

The SMTP server will respond with a status of 221.

response = Response(socket);
if (response.find("221") == response. npos)

t hrow Snt pExcepti on(response);

}

Now our SmartSocket goes out of scope and the socket is closed along with the
connection to the SMTP server.

Listing 2: Implementation
TIEETEIEE i rrrrrrrrrrd

/1 smtp.cpp: inplenmentation of the Smtp class.

/1 Copyright 2000 by Randy Charles Mrin

/1 You have unlimted ability to distribute and nmodify this source,
/1 but this legal notice nmust renmin intact and the Sntp cl ass nust
/1 remain within the kbcafe namespace.

THLLLEIEL bbb ririiirirrrlr
#i nclude "smtp. h"

#i ncl ude "w nsock. h"

#i ncl ude <sstreanr

#i ncl ude <i ostrean»

THLLLTIEL i rirrrlr
/1 Construction/Destruction

THLLLEIEL bbb rirrrlr
nanespace

std::string Response(SOCKET & socket)
{
int roundtrips = O;
std::string response;
whi | e(true)

char buffer[1024];
int n =::recv(socket, buffer, sizeof(buffer), 0);
if (n==-1)

throw kbcaf e:: Snt pException("socket read failed");
i
response += std::string(buffer, n);
if (response.find("\n") != response. npos)

#i f def _DEBUG

std::cout << response << std::endl;
#endi f

return response;

Copyright 2001-2002 Randy Charles Morin

www.kbcafe.com

roundtri ps++;
if (roundtrips > 1000)

t hrow kbcaf e: : Snt pExcepti on("socket read timeout");

}
void Wite(SOCKET & socket, const std::string & str)

{
#i f def _DEBUG
std::cout << str << std::endl;

#endi f
int n =str.length();
const char * s = str.c_str();
while (n)
int i =::send(socket, s, n, 0);
if (n<=0)
{
t hrow kbcaf e: : Snt pExcepti on("socket wite failed");
}
n-=i
S +=
}
b
class WBAI ni t
publi c:
WBAI ni t ()
WORD w = MAKEWORD(1, 1) ;
WEADATA wsadat a;
::WBASt artup(w, &wsadata);
b
~WBAI ni t ()
1 WBAC eanup() ;
} instanc’e;
cl ass Smart Socket
{
SOCKET m socket ;
publi c:
Smar t Socket (SOCKET & socket)
:m socket (socket){}
~Snmart Socket ()
{
.. cl osesocket (socket);
}
b
}
namespace kbcafe
{
Snt p: : Snt p()
{
}
Snt p: : ~Snt p()
{
}
voi d Sntp:: Send()
{
struct servent * sp = ::getservbynane("sntp", "tcp");

if (sp == NULL)

Copyright 2001-2002 Randy Charles Morin

www.kbcafe.com

t hrow Snt pException("SMIP i s an unknown TCP service");
}s
hostent * host;
i n_addr inaddr;

inaddr.s_addr = ::inet_addr(mstrServer.c_str());
if (inaddr.s_addr == | NADDR_NONE)
{
host = ::gethostbyname(mstrServer.c_str());
}
el se
{
host = ::gethostbyaddr((const char *)& naddr, sizeof(inaddr),
AF_I NET) ;

}
if (host == NULL)

t hrow Snt pException("invalid SMIP server");
}
SOCKET socket = ::socket(AF_I NET, SOCK_STREAM | PPROTO TCP);
if (socket == | NVALI D_SOCKET)

t hrow Snt pException("socket invalid");

Smart Socket smartsocket (socket);

sockaddr _in sa;

sa.sin_famly = AF_I NET;

sa.sin_port = sp->s_port;

sa. sin_addr.s_addr = *((u_l ong*)host->h_addr_list[0]);
if (::connect(socket, (sockaddr *)&sa, sizeof(sa)) < 0)

{

t hrow Snt pException("connection to host failed");

sid: :string response = Response(socket);
if (response.find("220") == response. npos)
{

t hrow Snt pExcepti on(response);
}
{
struct sockaddr_in |ocal;
int n = sizeof(local);
. get sockname(socket, (struct sockaddr *)& ocal, &n);
struct hostent * h = ::gethostbyaddr((char*)& ocal.sin_addr,
si zeof (1 ocal . sin_addr), AF_INET);
std::stringstream ss;
ss << "HELO "
<< (char *)(h ? h->h_nane : ::inet_ntoa(local.sin_addr))
<< "\r\n";
Wite(socket, ss.str());

esponse = Response(socket);
if (response.find("250") == response. npos)

[

t hrow Snt pExcepti on(response);

e e

std::stringstream ss;
ss << "MAIL FROM <" << m strSender << ">\r\n";
Wite(socket, ss.str());

esponse = Response(socket);
if (response.find("250") == response. npos)

—_ = e

-~

t hrow Snt pExcepti on(response);

Pt

std::stringstream ss;
ss << "RCPT TO <" << mstrRecipient << ">\r\n";
Wite(socket, ss.str());

}

response = Response(socket);

if (response.find("250") == response. npos)

Copyright 2001-2002 Randy Charles Morin

www.kbcafe.com

t hrow Snt pExcepti on(response);

std::stringstream ss;
ss << "DATA\r\n";
Wite(socket, ss.str());

—_ = e

esponse = Response(socket);
if (response.find("354") == response. npos)

t hrow Snt pExcepti on(response);

e e

std::stringstream ss;
Ss << "Subject: " << mstrSubject << "\r\n"

<< "To: " << mstrRecipient << "\r\n"

<< "From " << mstrSender << "\r\n"

<< "\r\n" << mstrContent << "\r\n.\r\n";
Wite(socket, ss.str());

}
response = Response(socket);
if (response.find("250") == response. npos)
{
t hrow Snt pExcepti on(response);
}
{
std::stringstream ss;
ss << "QUIT\r\n";
Wite(socket, ss.str());
}
response = Response(socket);
if (response.find("221") == response. npos)
{

t hrow Snt pExcepti on(response);

}s

Now that we have a functional class, we should write a small test program to show how
this class would be used. The sample I'm providing is the code I use to send my monthly
newsletter. I fudged the SMTP server address, in order to avoid problems with my ISP.

Listing 3: Sample

/Il newsletter.cpp : How | send ny newsletter every nonth
/1
#i nclude "smtp. h"

std::string a[] = { "rnorin@bcafe.con',
"newsl ett er @bcaf e. cont,

}s

int main(int argc, char* argv[])
{
kbcafe::Smtp sntp;
smt p. m.strServer "snt p. kbcaf e. cont';
smt p. m str Sender "newsl ett er @bcafe. cont;
smt p. mstrSubj ect = "KBCaf e. COM August Newsl etter";
sm p. mstrContent = "KBCafe.COM <http://ww. kbcafe. conr "
"August 2000 Newsletter\r\n"
by Randy Charles Mrin\r\n"
“\r\n"

\r\n"

"ARTI CLE OF THE MONTH = HowTo SMIP\r\n"
"\r\n"

"Sonme of the sinplest, yet very rich communication protocols were born "
"on the\r\n"

"Internet. This is the first article in a series where | will wite on "
"t hese\r\n"

Copyright 2001-2002 Randy Charles Morin

www.kbcafe.com

"sinpl e conmunication protocols. This article will focus on the SMIP "
"(Sinple\r\n"

"Mail Transfer Protocol) protocol. This protocol is the nost often "
"used\r\n"

"protocol for sending email over the Internet.\r\n"
"MORE OF THE ARCTICLE @r\n"

"http://ww. kbcafe.comarticles/smp.htm\r\n"
“\r\n"

\r\n"

"ARTI CLE OF NEXT MONTH = HowTo POP3\r\n"

“\r\n"

"A sinmple to use POP3 class for all occasions. This is the second "
"article in\r\n"

"Internet protocol series.\r\n"

"\r\n"
" \r\n"
"\r\n"
for (int i=0;;i++)
{
smp.mstrRecipient = a[i];
f{f (a[i].enpty())
br eak;
}
try
{
smt p. Send() ;
catch(...)
{
}
}
return O;

}
For a more complete understanding of SMTP, I suggest you consult the RFCs (Requests

For Comments). RFCs are Internet standards that have been adopted by the IETF
(Internet Engineering Task Force). The RFC for SMTP is RFC 821 and can be found at
the following URL

http://www.ietf.org/rfc/rfc0821.txt?number=821

I found it very helpful to read through the scenarios provided in the RFC. They give a
better indication of the complete functionality provided for by this mail protocol.

Copyright 2001-2002 Randy Charles Morin

